
Your Guide

to Kubernetes

Table of Contents

3 Why should you use Kubernetes?

4 When not to use Kubernetes

5 Kubernetes architecture

6 The basics of Kubernetes terminology

7 Single-tenancy vs Multi-tenancy Kubernetes

8 Working with Kubernetes for the first time

12 Comparing Clouds: AWS vs Azure vs Google

 Cloud & Avoiding ‘Day 2’ Kubernetes problems

13 About Appvia Wayfinder

Kubernetes (often seen abbreviated as K8s) is an open-source
platform built for the automated deployment, scaling and managing of
containerised applications.

Google originally created Kubernetes as a small-scale project called
‘Borg’ around 2003, where they managed their own workloads. It was
made Open Source in 2014 and presented to the world as ‘Kubernetes’.
Kubernetes provides a way to scale your applications and infrastructure
without having to scale your operations teams. You’re abstracted away
from cloud providers, which gives the ability to easily manage applications
across on-premises, hybrid, or public cloud infrastructure.

This guide is a comprehensive overview of important elements,
considerations and functionalities of Kubernetes, plus real-world
experience on how to start utilising it.

Cost

There’s an enormous cost benefit to Kubernetes,
which isn’t always realised. Because the same
host is reused, you’re able to determine the
amount of free resources within a given node
and automatically schedule something else on
that node. In a non-orchestrated environment,
you would undoubtedly have a lot of free (read:
wasted) space on the host, whereas a Kubernetes
environment optimises that for you.

The elasticity of Kubernetes applications allow you
to schedule workloads up and down, so that you
can minimise your costs and scale only according
to demand.

Security

Kubernetes simplifies the ‘defence in depth’
approach by defining best practice at all levels of
your application stack: Cloud, cluster, container and
code. Together with the ‘immutable infrastructure’
concept made popular by containers, the security
posture of your stack can be hard to navigate. But
through automation and securing your clusters in
line with best practice for each cloud provider, you
can significantly improve your security footprint.

In Kubernetes, there is a segregation of workloads
running on a single instance, and the attack surface
is reduced because only a single node or container
is able to be attacked at any given time. Securing
your Kubernetes cluster also looks a little different
on each cloud provider, which can be an involved
process if you don’t automate it.

Why should you use Kubernetes?

You might not need Kubernetes to successfully run your applications, but it’s going to
make your life a whole lot easier. There are reasons why it’s remained the ‘golden child’
of container management, namely due to...

Learn more at appvia.io 3

Scalability

Scalability is a cornerstone
of Kubernetes usability.
Your infrastructure is able to
automatically scale in line
with your application without
you needing to manually do
something about it. Although
it’s an add-on to Kubernetes, it’s
considered to be a ‘straight out-
of-the-box’ solution for managing
your applications at scale.

Availability

Best practices with Kubernetes
based applications push you to
architect applications for failure,
which in turn improves the
resilience and availability. This
can be done at many levels ...
from the applications failing, the
underlying infrastructure, to the
availability zone within the cloud
provider. If they’re designed well,
your applications can recover
from these without any loss of
service to your users.

Portability

Because your application is built
within a container, it can be
moved around easily. There’s
also a lot of freedom when it
comes to choosing operating
systems, container runtimes,
process or architectures,
cloud platforms and PaaS in
Kubernetes. And with great
freedom, comes great portability.

https://www.upguard.com/blog/defense-in-depth
https://medium.com/@adhorn/immutable-infrastructure-21f6613e7a23

Learn more at appvia.io 4

When not to use Kubernetes

Is there ever a wrong time to utilise Kubernetes?

Yes … and no. There are situations where you might not be
able to realise the full value that Kubernetes can bring, at least
not yet, and there are also potential road-blocks you could run
into along the way.

Kubernetes is complicated

No doubt, there’s a steep learning curve to Kubernetes. If you
don’t have an expert on your team who possesses an
in-depth knowledge of K8s or a solution that can help manage
the complexity, you could end up spending a lot of time and
resources getting up to speed.

Kubernetes is expensive

And having that expertise as a resource on your team comes
at a hefty cost, despite Kubernetes itself being cost-efficient.
Costs can also vary significantly depending on which cloud
providers and managed Kubernetes services you use, for
better or for worse.

But, is it worth it?

We’d say so. Kubernetes was designed to boost performance
and reduce the operational effort of distributed systems. You
can make decisions that will lower the cost of your Kubernetes
ecosystem, and it’s complex usability doesn’t mean that your
team has to be Kubernetes experts to realise its benefits -
there are solutions for that.

Kuberneres architecture
As with most things, the first step to getting on board is understanding how Kubernetes is set up. At a base
level, a K8s environment consists of a control plane (master), a distributed storage system for keeping the
cluster state consistent (etcd) and a group of cluster nodes (kubelets).

Cloud-controller-manager

The cloud-controller-manager runs in
the control plane as a replicated set of
processes (typically, these would be
containers in Pods).

Kubelet

The kubelet maintains a set of pods,
composed of at least one container,
in entirety. Its functionality is watching
for pod specs via the Kubernetes
API server.

Kube-API Server

The Kube-API server validates and
configures data for API objects, including
pods and services. The API Server
provides the frontend to the cluster’s
shared state, which is where all of the
other components interact.

Kube-proxy

Kube-proxy is a network proxy that runs
on each node. It maintains network rules,
which allow for network communication
to Pods from network sessions inside or
outside of a cluster.

Control plane (master)

The Control plane is made up of the
kube-api server, kube scheduler, cloud-
controller-manager and kubecontroller-
manager. Kube proxies and kubelets
live on each node, talking to the API and
managing the workload of each node.

Kube-controller-manager

The Kubernetes controller manager
embeds the core control loops shipped
with Kubernetes. In applications of
robotics and automation, a control loop is
a non-terminating loop that regulates the
state of the system.

etcd

etcd is a distributed key-value store and
the primary datastore of Kubernetes.
It stores and replicates the Kubernetes
cluster state.

Kube-scheduler

Kube-scheduler is the default scheduler
for Kubernetes, in charge of scheduling
pods onto nodes. It runs as part of the
control plane.

Cloud

etcd

Kubernetes Control Pane Kubernetes Nodes

Cloud-Controller-Manager Kube-Controller-
Manager

Kube Scheduler

Kube-api server

Kubelet Kubelet

Kube Proxy Kube Proxy

Learn more at appvia.io 5

The basics of
Kubernetes terminology

Learn more at appvia.io 6

Node
A node is a worker

machine that contains
the services necessary to
run Pods. You’ll typically
have several nodes in a

cluster, and each node is
managed by the Master.

Desired state in Kubernetes (vs actual state)
Desired state is a core concept of Kubernetes. It means that, through a declarative or an
imperative API, you describe the state of the objects that will run your containers.

Kubernetes will continuously attempt to make the actual state match your desired state,
which is how your containers are actually running. The actual state may never reach the
desired state (for example, you may have defined scale limits that prevent a workload from
being scheduled at the desired size), but the controllers will be constantly running and
working to fix issues, remediate errors, and schedule workloads as soon as possible.

Namespace

A virtual ‘slice’ of that
cluster where you can
provision resources,

organise objects
and deploy applications

inside the cluster.

Cluster

A cluster is a group
of nodes that run

your containerised
applications. You

manage the cluster and
everything it includes

with Kubernetes.

Single-tenancy vs
Multi-tenancy Kubernetes

Single-tenancy in terms of Kubernetes refers to an instance where a single workload, application, team or
environment is associated with a single Kubernetes cluster.

Multi-tenancy, on the other hand, is when you have multiple applications, teams or environments all running
side-by-side on one, large cluster.

The two options are distinctly opposite and, although both are valid approaches, there are a few reasons why
you would choose one over the other. You should base your choice around these five key areas: Security,
Reliability, Cost and Operational Overhead.

Learn more at appvia.io 7

Cloud security

Kubernetes has measures in place to prevent security breaches — like Pod Security Standards and
NetworkPolicies — but, as is the running trend, it takes experience to tweak these tools in the right way.
And even then, they can’t prevent every security breach.

The way you configure your clusters has a hefty impact on your security. While we’ve established that no
system can ever be completely secure, single-tenant deployments are optimised for increased security,
because each customer’s data is completely separate from the others. Hence, there’s almost no chance that
one customer will accidentally access another customer’s data.

In a multi-tenant environment, where multiple applications are running side-by-side, apps share the hardware,
network and operating system on the nodes of the cluster so there is a heightened risk of a breach.

Cost comparison

At first glance, operating fewer
clusters is the cheaper route -
there’s more resource overhead
cost when you have more clusters.
More clusters, more money. But,
managing the costs of storage
and network bandwidth are far
easier to manage with just one
account per cluster.

Reliability of the architecture

Much like the security benefit to
single tenancy architecture, the
reliability risks are lessened when
there is a separation of customer
information. If you have everything
running on a single cluster and a
misconfigured application workload
causes a cluster-wide outage, then
all your workloads will be down.

And, there are many simple
mistakes that could cause a
catastrophic failure. We get
deeper into some of the most
common errors below, but
these could include: insufficient
resources, failing liveliness
readiness probes etc.

Operational overhead

In a single tenant environment, you
have more control over backups
and recovery, because one system
is backed up to a dedicated part
of a SaaS server. If an app has
specific requirements, these
requirements can be installed in
its cluster without affecting any
of the other clusters.

Every cluster can be equipped
with exactly the configuration
that the corresponding app needs
— no more and no less — which
improves the efficiency of both the
development and operation of
your applications.

https://www.appvia.io/blog/-single-tenancy-vs-multi-tenancy-kubernetes-clusters
https://www.appvia.io/blog/-single-tenancy-vs-multi-tenancy-kubernetes-clusters

Working with Kubernetes
for the fiirst time

There are several steps you’ll want to take when first diving into Kubernetes. Your first step should be to
have a Kubernetes cluster to play with, which could be in the form of Minicube or Kind. Once you’ve done
that, you’ll deploy an application through two K8s resources: deployment and service.

Common Kubernetes errors

When you’re getting started with Kubernetes, there are many reasons your deployments might fail, given the
large amount of unfamiliar jargon to come to terms with and large margin for error.

Here’s an at-a-glance look at some of the most common errors in Kubernetes and how to overcome them.

1. You have insufficient cluster resources

When creating a pod, Kubernetes will schedule the pod to a node which has enough free CPU, memory
and ephemeral storage to satisfy the pod’s requests. When the cluster doesn’t have sufficient resources
available, the pod’s state will be ‘pending’ and when describing the pod, its events will contain “Failed
Scheduling” messages.

Events:

Type

Warning

Reason

FailedScheduling

Age

29s (x2 over 29s)

From

default-scheduler

Message

0/1 nodes are available: Insufficient
memory

You can resolve this by reducing the pod’s requests or by increasing the size of the cluster, either manually
or by installing autoscaler into the cluster.

2. You’ve specified the wrong container image

After deploying a pod, you may see that the state is ‘ErrImagePull’ or ‘ImagePullBackoff’. There are two potential
causes of this. Firstly, if the image you have specified in your pod manifest does not exist. Alternatively, if the
image is hosted in a private repository, you might need to configure image pull secrets.

[~ kubectl get all
NAME READY STATUS RESTARTS AGE
pod/nginx-6d56989578-pgb95 0/1 ErrImagePull 0 12s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/nginx 0/1 1 0 12s

NAME DESIRED CURRENT READY AGE
replicaset.apps/nginx-6d56989578 1 1 0 12s

Learn more at appvia.io 8

https://www.appvia.io/blog/tutorial-deploy-kubernetes-cluster
https://www.appvia.io/blog/kubernetes-objects-cheat-sheet
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://kubernetes.io/docs/concepts/containers/images/#referring-to-an-imagepullsecrets-on-a-pod

When the pod first fails to start, you’ll see the ‘ErrImagePull’ status, indicating that the image did not pull.
After a few failed attempts, the status will change to ImagePullBackOff and kubernetes will add a delay
between attempts to pull the image.

3. Your app is crashing post-launch

If your app has crashed, there could be a few things to blame. Check your container logs using the kubectl logs
command for any application errors. You should also check the exit code of the failed container; an exit code
of 137 or 143 usually indicates that the container was shut down by Kubernetes due to insufficient resource
requests, a failing probe or another reason. After a number of failures in a short space of time, the status will
change to CrashLoopBackOff.

4. Your liveliness/readiness probes are failing

Kubernetes provides two kinds of probes: readiness probes and liveness probes. These probes make sure
that Kubernetes is able to detect when your application is unhealthy or unable to serve traffic, even when the
application process has not exited.

A readiness probe is used when a container is first started and is used to wait for a container to become ready
to handle requests. A liveness probe is used to ensure that a container continues to serve traffic once it has
started. These probes can be configured to restart the container if it fails to start in time or an error causes it to
stop handling requests.

If your probes are failing, check your container logs for any errors that could be causing the failure. Also,
make sure it’s possible for your probe to run … for example, an http based probe will fail if the container is not
listening on the port being checked or is only listening on local host or an exec based probe will fail if the target
script/binary does not have execute permissions.

[~ kubectl get all

NAME READY STATUS RESTARTS AGE

pod/nginx-6d56989578-pgb95 0/1 ImagePullBackoff 0 48s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/nginx 0/1 1 0 48s

NAME DESIRED CURRENT READY AGE

replicaset.apps/nginx-6d56989578 1 1 0 48s

[~ kubectl get all

NAME READY STATUS RESTARTS AGE

pod/nginx-7459d6bcc8-tt84p 0/1 CrashLoopBackOff 2 4m6s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/nginx 0/1 1 0 4m6s

NAME DESIRED CURRENT READY AGE

replicaset.apps/nginx-7459d6bcc8 1 1 0 4m6s

Learn more at appvia.io 9

This error is caused by the file “healthcheck.sh” which is specified as the liveness
probe not existing.

5. Your Pods are getting OOMKilled and restarting when creating a Pod

You can specify both a request and a limit for cpu and memory resources. Kubernetes will always schedule a
pod to a node that has enough cpu and memory available to satisfy your request. A container that exceeds
its memory request is in danger of being restarted or rescheduled, and a container that exceeds its memory
limit will be restarted immediately. A pod that exceeds its cpu requests will not be killed, but may be throttled
if the node does not have enough available cpu, and will always be throttled if it exceeds its limit, which may
significantly reduce its performance.

To avoid this, refine your containers requests to ensure that they are not exceeded by your container, and make
use of a HorizontalPodAutoscaler to ensure that increases in application load are handled by an increased
number of pod replicas.

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 2m2s default-scheduler Successfully assigned appvia/nginx-685f6b867dj5jhf

to docker-desktop

Normal Pulled 79s (x3 over 2m) kubelet, docker-desktop Successfully pulled image “nginx”

Normal Created 79s (x3 over 2m) kubelet, docker-desktop Created container nginx

Normal Started 79s (x3 over 2m) kubelet, docker-desktop Started container nginx

Normal Pulling 61s (x4 over 2m2s) kubelet, docker-desktop Pulling image “nginx”

Warning Unhealthy 61s (x4 over 111s) kubelet, docker-desktop Liveliness probe failed: OCI runtime exec

failed: exec failed: container_linux.go:346 starting container process caused “exec: \” . /healthcheck.

sh\”: stat.healthcheck.sh: no such file or directory”: unknown

Normal Killing 61s (x3 over 101s) kubelet, docker-desktop Container nginx failed liveness probe, will be

restarted

[~ kubectl get all

NAME READY STATUS RESTARTS AGE

pod/nginx-7459d6bcc8-tt84p 0/1 OOMKilled 1 2m49s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/nginx 0/1 1 0 2m49s

NAME DESIRED CURRENT READY AGE

replicaset.apps/nginx-7459d6bcc8 1 1 0 m49s

Learn more at appvia.io 10

Often you’ll see a CrashLoopBackoff error rather than an OOMKilled error. After too many OOMKilled errors in
a short time, Kubernetes will add a delay between retries and the status will change to CrashLoopBackoff as
above. In order to diagnose the problem in that case, you can check the output of ‘kubectl describe pod’ where
you should be able to see the reason for the pods termination.

Containers:

Nginx:

Container ID: docker://3b0a27e56f49d25cf14394d648bf943f5f163d8d4e6a6e4532e42dcc70ae4169

Image: nginx

Image ID: docker-pullable://nginx@sha256:a93c8a0b0974c967aebe868a186e5c205f4d3bcb5423a56559f2f9599074bbcd

Port: <none>

Host Port: <none>

State: Running

Started: Mon, 20 Jul 2020 12:34:16 +0100

Last State: Terminated

Reason: OOMKILLED

Exit Code: 137

Started: Mon, 20 Jul 2020 12:33:18 +0100

Finished: Mon, 20 Jul 2020 12:33:59 +0100

Ready: True

Restart Count: 5

Limits:

memory: 5000Ki

Requests:

memory: 5000Ki

Environment: <none>

Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-jb79s (ro)

Learn more at appvia.io 11

Avoiding day 2 Kubernetes problems

Nothing worth having comes easy, right? Complex functionalities in Kubernetes like networking, managing
authentication, connectivity between services, role based access controls etc. are hard to get your head
around if you’re completely new to the game.

But utilising Kubernetes doesn’t need to be an absolute nightmare. Appvia Wayfinder is a cloud-based platform
that enables the automation of development environments and security standards for teams using Kubernetes.
Designed to make Kubernetes a commodity for any organisation by removing the need for specialists.

Microsoft Azure

A close competitor to AWS with an extremely capable cloud infrastructure, Microsoft Azure
has the benefit of integrating with other Microsoft tools. It should be a strong candidate for
enterprises with an existing Microsoft footprint with cloud services and SaaS licenses being
managed in a single place.

Comparing clouds -
AWS vs Google cloud

You have the ‘pick of the litter’ of cloud providers so to speak. There has been a long-standing battle between
AWS, Azure and Google Cloud, and you want to compare them all to make sure your team is utilising the one(s)
that work for you.

Spoiler: They’re all used for the same purpose and provide nearly the same services. But you should still take
a good look at each to determine which might be the best for you, or which aspects to use of which - if you’re
utilising a Kubernetes Managed Service. Keep in mind when you look at each cloud provider that they each
have varied price models, and you might also consider using a provider closer to your geographical region, or
the region of your users.

Learn more at appvia.io 12

Amazon Web Services

AWS has been in the game the longest and, because of that, is often considered the leading
platform. With a vast tool set that continues to grow exponentially, the capabilities of Amazon
Web Services (AWS) are unmatched.

Google Cloud

A well-funded potential underdog in the competition, Google entered the cloud market
after Amazon Web Service and doesn’t have the enterprise focus that helps draw corporate
customers. But Google is Google, with strong expertise in AI and analytics that present
as significant advantages, and having created Kubernetes their managed Kubernetes
service is unrivalled.

https://www.appvia.io/blog/avoiding-day-2-kubernetes-problems
https://www.appvia.io/blog/journey-beyond-kubernetes-management
https://azure.microsoft.com/en-gb/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://cloud.google.com/

Streamlined Testing
and Security

By automating ephemeral
namespaces for testing
and applying best-practice
configurations, Wayfinder
ensures optimal security and
efficiency in your infrastructure.

Scalable Infrastructure
Management

Appvia Wayfinder enables
self-service provisioning of cloud
resources, centralises control
for platform teams and enhances
developer productivity with
seamless CI/CD integration.

Kubernetes Simplified

Unleashing the robust capabilities
of Kubernetes without the
associated complexities, Wayfinder
makes container orchestration
accessible and cost-effective.

Simplifying Cloud Management, Empowering Developers

Appvia Wayfinder transforms the way that teams deliver containerised applications to the cloud. By
enabling self-service provisioning of cloud resources and environments Wayfinder delivers efficiency,
scalability, and security for both application and platform teams.

Delivery Bottlenecks

Appvia Wayfinder eliminates
roadblocks for application teams
and eases pressure on platform
teams, paving the way for efficient
and smooth app development.

Escalating Cost
and Complexity

With its simplified Kubernetes
management and cloud cost
optimisation, Wayfinder reins in
disproportionate cloud spending
and reduces the need for deep
in-house expertise.

Unmanageable Security
Overheads

By employing best-practice
configurations and offering
built-in security features,
Wayfinder significantly mitigates
the risk of infrastructure-related
security breaches.

We Solve

Key Capabilities

Learn more at appvia.io

Appvia Wayfiinder

https://www.appvia.io/

