
Why Developer
Self-Service is the key
to cloud innovation

Why Developer Self-Service
is the key to cloud innovation

Introduction to developer self-service

What exactly is developer self-service?

What developer self-service is not

What are the benefits of developer self-service?

What are the cloud delivery issues?

What is causing cloud delivery issues?

What does it mean to devops?

Automating cloud security

Why not stick to devops and automation?

What causes the issues:

What's the overall impact

So how can I adopt developer slef-service?

Conclusion: Devops needs to evolve

3

4

5

6

7

8

10

11

13

14

15

16

18

Introduction to Developer
Self-service

Developer self-service is a way of providing developers with the ability to provision
the Cloud compute resources that they need for their application(s) to work - such
as compute, databases, object storage and message queues - without needing to
interact with a Platform, Cloud or DevOps engineer. Currently Cloud automation
tooling is designed primarily for the Cloud Engineer, Platform Engineer or DevOps
Engineer persona, resulting in a lot of time-bound activities sitting outside of the
Development teams. This often hampers security visibility and awareness as well as
introduces significant project delays.

Developer self-service is a way of empowering business units to deliver their
applications in the Cloud without requiring specialist skill-sets to be present within
the project team.

Developer self-service is a way of empowering
business units to deliver their applications in the
Cloud without needing to depend on specialist

skills inside of the project team

3

What exactly is developer
self-service?

Developer self-service is a way to optimize the relationship
between the Cloud and developers inside of the business units.

Cloud compute resources should be immediately available to applications creating
a fully functional, end-to-end business service that results in faster time to market,
expedited application modernization and faster Cloud migrations.

Developers should be able to repeatedly provision services without being domain
experts on the Cloud or the tooling surrounding the Cloud. The expected level of
knowledge should remain close to the application itself, meaning that they only

There will always be an element of up-skilling needed in regards to
the technology choices being made to support software delivery but
it is important to keep this to a minimum so that the focus is primarily
on delivering business functionality quickly, securely and repeatedly.

The type of Cloud
services they need

i.e. a Database,
object storage,

machine learning etc.

The number of
environments they

need to validate the
quality and feature

capability produced
in the product.

The standard business
requirements - such

as the region required
for hosting or the
level of service

availability needed.

An understanding of
how to debug their

application, find
logs and where to
receive information

about issues.

4

What developer
self-service is not

Current Cloud automation tooling is very DevOps persona
centric and assumes a lot of domain expertise in regards to
Cloud automation, Cloud best practice and Cloud security.

Shifting the tooling left to developers without reducing the required domain
knowledge cannot be considered Developer self-service as it does not have the
correct impact on the business. The amount of developer upskilling required on
Cloud operations, Cloud security and DevOps tooling (on top of their existing
responsibilities of software engineering) would cause significant delays in time
to market and product innovation.

If you are considering shifting things left to Developers then there has to be
considerable effort on improving the developer experience and reducing the
level of Cloud and operations knowledge needed in order to deliver software
inside the organization.

The marker of successful Developer self-service is the speed of
which a developer can be onboarded inside of the organization

and deliver an effective outcome and the amount of time and
effort invested in order to achieve that.

5

Providing developers with the ability to easily serve what
they need whenever they need it removes the need to
scale DevOps, Platform or Cloud teams as demand for
Cloud scales up within a business.

This has multiple benefits:

•	 Reduced cost: as fewer resources are needed to meet the demand
of the business.

•	 Reduced skills dependency: no reliance on high volumes of specialist
skills, which are difficult to recruit and retain.

•	 Increased delivery speed: as developers have no wait time.

•	 Faster time to market: due to increased delivery speed.

•	 Shift-left principles: moves visibility and control to the developers in
the business units that own the data, development, vision, marketing,
operational risk, timelines, users and budget.

•	 Repeatability and consistency: one way of working across your
delivery teams.

•	 Improved security oversight: a clearly defined delivery model makes
it clear where security checks & balances should be implemented.

What are the benefits of
developer self-service?

When Developers are provided with more efficient ways
of working their value to the business can becomes more
focused on capitlizing quickly on markets, faster product
feature releases and cost reduction by being able to do

more with less within the Cloud, Platform or DevOps teams.

6

What are the cloud
delivery issues?

With multiple Cloud vendors and the ever increasing
number of Cloud services to choose from, current

ways of working are making Cloud adoption
increasingly complicated, resource intensive and time

consuming for a lot of organizations.

Top cloud challenges for
all organizations:

Source: Flexera, state of
cloud report 2022

Figure 1.

Security

Lack of Resources/Expertise

Manging Cloud Spend

Governance

Managing Software Licenses

Compliance

Team Responsibility Issues

Cloud Migration

Managing Multi-cloud

85%

83%

81%

77%

76%

76%

73%

73%

71%

The recent "State of Cloud Report
2022" from Flexera shows security
and skills as the biggest challenges
facing organizations.

Cloud delivery is hugely reliant on
tools and the experience of Cloud
engineers. The quality of the security
implementations are predicated on
the knowledge of the resources and
the understanding of Cloud security
best practices.

The current short supply of skills in
the market has inevitably increased
security risk as time pressures on
constrained resources have resulted
in reduced quality and a high risks
of security breaches.

7

One of the main issues facing organizations is the lack of
consistency in how teams are delivering in the Cloud. Most
businesses attempt to drive consistency through people
and tools, often leading to high costs, misconfigurations
and a limited understanding of the risks introduced from
project to project.

What is causing cloud
delivery issues?

Cloud

DevOps
Engineers

Internal Teams

Custom
Integration

Support
and Change

Tools

Tools

Business
Unit B

Business
Unit A

Business
Unit C

Internal TeamsInternal Teams Outsource Teams

Delivery
Teams

Delivery
Teams

Delivery
Teams

Figure 2.

8

How teams are delivering is equally as important as what they are delivering.

Cloud

Platform
Engineers

Custom
Integration

Support
and Change

Tools

Tools

Internal Teams

Business
Unit B

Delivery
Teams

Outsource Teams

Business
Unit A

Delivery
Teams

Internal Teams

Business
Unit C

Delivery
Teams

Internal Teams

Alternative delivery methods can provide more consistency, such as central
Platform teams depicted below.

This has the added benefit of solving technical problems in one place and reducing
costs across the business, however, without developer self-service capabilities the
team will need to scale with the demand of the business.

Figure 3.

In the example above, you can see that there can be a mix of internal teams and
outsourced teams all delivering in the Cloud. This mixed approach will inevitably
cause deviations that can introduce problems at a significant cost to the business.

9

Although DevOps methodologies are not related specifically
to the Cloud, the Cloud makes it possible to achieve good
automation through the exposure of programmatic interfaces
(APIs).

Aligning to a fully automated process for all of the Cloud means that the right
security checks and balances can be put in place throughout that process.

What does it mean to devops?

The automation my team uses improves the quality of our work
All agree responses

High 97%

Mid 87%

Low 51%

In the 2021 state of DevOps report 97% of respondents
agreed that automation improves the quality of the work

of the team.

Continuous integration, testing, Cloud automation and security test automation
are critical to reducing risk and improving quality in DevOps processes.

Figure 4.

10

Automating Cloud delivery means that security checks can be
put in place within that process.

Technologies such as checkov provide a huge number of
 security standards that can instantly be applied to Continuous

Integration pipelines to validate the security of what is being
produced by Cloud teams.

Enabling these checks makes security more visible to teams as they are iterating
across the business and the results can be fed back into the CI pipeline checks to
make sure teams fail fast and amend accordingly.

Having a central versioned security policy repository will provide consistent checks
across your Cloud pipelines. This repository can be versioned and then consumed
by others across the business, making it easier for policy and Cloud teams to
collaborate and understand what checks and exemptions are in place.

Automating cloud security

11

The above diagram shows how these security checks can be centralized and
where the checks should be happening:

Failing fast: Placing checks at test stage means the author can fail quickly and
amend accordingly before submitting the changes

Central checks: Placing the same checks in your Continuous Integration pipelines
will mean that changes made by others have checks performed in one place that
is visible to the team

Project specific checks: Enforcing checks at the project level will make sure that
any project specific configurations are also validated

Module
Pipel ine

Project
Based

Project
Pipel ine

Cloud
Account

Security Requirements
(CISCO / Others)

DevOps / Cloud /
Platform Engineer

Central Pol icy
Repository

Versioned

Managed as code

Versioned
Module

CreateCreate Test Cl Cl
Project

Specif ic
Module

Plan

Versioned
Module

CreateCreate Test Cl Cl
Project

Specif ic
Module

Plan

Versioned
Module

CreateCreate Test Cl Cl
Project

Specif ic
Module

Plan

Ex
am

pl
e

C
lo

ud
 M

od
ul

es

Figure 5.

12

Although automating is critical to simplifying security and making sure there is
a repeatable way of delivering, there are limitations and manual overheads even
when best practices are followed.

These limitations have more to do with tooling in the industry and it being very
DevOps centric and not necessarily business centric or developer centric.

Why not stick to devops
and automation?

Module
Pipeline

Project
Based

Project
Pipeline

Cloud
Account

Security Requirements
(CISCO / Others)

DevOps / Cloud /
Platform Engineer

Central Policy
Repository

Versioned

Managed as code

Versioned
Module CreateCreate Test Cl ClProject Specific

Module Plan

Versioned
Module CreateCreate Test Cl ClProject Specific

Module Plan

Versioned
Module CreateCreate Test Cl ClProject Specific

Module Plan

E
xa

m
p

le
 C

lo
u

d
 M

o
d

u
le

s

Issues: Issues:

Issues:

Decreased
Productivity

Time consuming
Repetetive

Inconsistent
No Guarentees

Security
Risks

Inconsistent
No Guarentees

Inconsistent
Variable

Figure 6.

13

Figure 6 highlights where the risks can still
be, even with a firm automation process and

a centralized set of security standards.

What causes the issues:

Manual continuous integration:
When CI pipelines are manually created by team members security
steps can be missed, removed or commented out. Enforcing specific
checks is difficult and is managed through a manual review process
within the team.

Project specific parameters:
As each project has its own unique set of parameters (database name,
object storage name or regions etc.), each Cloud module consumed
needs to provide project specific information. This causes repository
sprawl and reduces configuration oversight, resulting in security risks.

Runtime security:
Checks need to be enforced at runtime so that modules used to build
the Cloud infrastructure are subject to the same security checks during
the production of the Cloud modules.

Manual steps and slow time to market:
Each project needing its own unique set of Cloud configuration,
pipelines, pipeline security checks and automation work can result in
significant project delays and a need to scale the team up in relation
to the demand.

14

The typical impact of custom tool and process integration is an increase
in security challenges, poor DORA metrics and a reduction in cloud-native
approaches to delivery.

DevOps, Platform and Cloud engineers are so focused on attempting to manage
and operate the Cloud delivery lifecycle that they are no longer spending time
and energy on helping improve the quality of applications - be that in terms of
design approach, developer education or training and adoption of Cloud best
practices. This lack of developer education can result in poor cloud-native adoption
processes, meaning applications are not designed and delivered in a way that sets
them up for success in the future.

The metrics used to measure the effectiveness of a DevOps
implementation are:

Mean time to recovery: 	 The amount of time it takes to recover from
				 a system failure

Change failure rate: 	 How often a team's changes results in 				
				 failures after new code releases

Deployment frequency: 	 The frequency of deployments
				 to production

Lead time for changes: 	 The amount of time it takes from code 				
				 change to a working deployment

What is the overall impact?

Additional metrics include:

Cloud delivery quality frequency:
How often are Cloud modules failing
best practice tests

Security quality frequency:
How often are issues being raised
against modules that are not
complying to security standards

These are useful metrics
to consider throughout the

software delivery process as
they can be instrumental in

understanding the quality of the
applications being produced

and as a marker of how Cloud
native your organization is.

15

If we were to take an example Cloud service such as a production S3 storage
module then the only real information a developer would be required to provide
would be the application specific details such as the region they want the bucket
in, the bucket name and whether it is private or public. Some of these decisions
(such as region or public / private buckets) may be enforced by security teams
in the business.

So how can I adopt developer
self-service?

CISO/Security
Teams

DevOps/Cloud
Engineer Persona

Project Specific
Developer Persona

Application Specific
Configuration

Secure Default
Configuration Input

Project Specific
Configuration Input

Project Specific
Configuration Output

•	 Encryption at rest
•	 Encryption in transit

(TLS)
•	 Not a public bucket
•	 Least priviledge

IAM Access
•	 Versioning
•	 Backup (cross

region application)

•	 Bucket name
•	 Region

•	 Bucket endpoint
•	 AIM role for bucket

access

Developer self-service is still a maturing paradigm in the industry
and, as with all technology, will mature and improve.

To understand how it can be achieved we have to break down the flow from figure
5 (pg. 12) further to understand who is responsible for what inside the chain and
tackle the security issues and optimize the Cloud delivery outcome.

Figure 7.

16

 If the DevOps, Cloud or Platform engineers are working with the security teams
on the security requirements then the cloud modules can include default security
configurations that the projects inherit.

Enforce security checks
at deploy time

Automated security and
quality tests

Secure Default
Configuration Input

Project Specific
Configuration Input

Project Specific
Configuration Output

DevOps/Cloud
Engineer Persona

Project Specific
Developer Persona

Application
Specific

Configuration

•	 Encryption at rest
•	 Encryption in

transit (TLS)
•	 Not a public bucket
•	 Least priviledge

IAM Access
•	 Versioning
•	 Backup (cross

region application)

•	 Bucket name
•	 Region

•	 Bucket endpoint
•	 AIM role for

bucket access

Code Test Publish Output App
Config

App Consume
ConfigConsume Add

Input Provision

Figure 8.

This means that developers can input known parameters about their applications
without getting into the technical details of learning a DevOps tool and hence
deliver faster and more securely.

If we shift left the project specific inputs to the actual
development teams as shown in Figure 8 then we provide a simpler

abstraction that is more tangible to the application delivery.

17

Conclusion - Cloud delivery
needs to change!

In order for businesses to meet Cloud demand in a scalable
and repeatable way teams need to be presented with a
secure, self-service Cloud capability that enables them to
deliver quickly without compromising on security.

With Cloud automation technologies being primarily focused on the DevOps
and Cloud Engineer persona and not the Developer, it has become a people and
tool based approach rather than a commodity and product-centric approach,

resulting in high delivery costs and the introduction of security risks.

Developer self-service is a way of empowering the business units to deliver
and scale in the Cloud to unlock innovation and stay competitive.

Developer self-service is a way of empowering
the business units to deliver and scale in the

Cloud to unlock innovation and stay competitive.

18

